Feedback Control Theory
نویسندگان
چکیده
References 197 Preface Striking developments have taken place since 1980 in feedback control theory. The subject has become both more rigorous and more applicable. The rigor is not for its own sake, but rather that even in an engineering discipline rigor can lead to clarity and to methodical solutions to problems. The applicability is a consequence both of new problem formulations and new mathematical solutions to these problems. Moreover, computers and software have changed the way engineering design is done. These developments suggest a fresh presentation of the subject, one that exploits these new developments while emphasizing their connection with classical control. Control systems are designed so that certain designated signals, such as tracking errors and actuator inputs, do not exceed pre-speciied levels. Hindering the achievement of this goal are uncertainty about the plant to be controlled (the mathematical models that we use in representing real physical systems are idealizations) and errors in measuring signals (sensors can measure signals only to a certain accuracy). Despite the seemingly obvious requirement of bringing plant uncertainty explicitly into control problems, it was only in the early 1980s that control researchers re-established the link to the classical work of Bode and others by formulating a tractable mathematical notion of uncertainty in an input-output framework and developing rigorous mathematical techniques to cope with it. This book formulates a precise problem, called the robust performance problem, with the goal of achieving speciied signal levels in the face of plant uncertainty. The book is addressed to students in engineering who have had an undergraduate course in signals and systems, including an introduction to frequency-domain methods of analyzing feedback control systems, namely, Bode plots and the Nyquist criterion. A prior course on state-space theory would be advantageous for some optional sections, but is not necessary. To keep the development elementary, the systems are single-input/single-output and linear, operating in continuous time. Chapters 1 to 7 are intended as the core for a one-semester senior course; they would need supplementing with additional examples. These chapters constitute a basic treatment of feedback design, containing a detailed formulation of the control design problem, the fundamental issue of performance/stability robustness tradeoo, and the graphical design technique of loopshaping, suitable for benign plants (stable, minimum phase). Chapters 8 to 12 are more advanced and are intended for a rst graduate course. Chapter 8 is a bridge to the latter half of the book, extending …
منابع مشابه
Active control vibration of circular and rectangular plate with Quantitative Feedback Theory (QFT) Method
Natural vibration analysis of plates represents an important issue in engineering applications. In this paper, a new and simplify method for vibration analysis of circular and rectangular plates is presented. The design of an effective robust controller, which consistently attenuates transverse vibration of the plate caused by an external disturbance force, is given. The dynamics of the plate i...
متن کاملSingular Perturbation Theory in Output Feedback Control of Pure-Feedback Systems
This paper studies output feedback control of pure-feedback systems with immeasurable states and completely non-affine property. Since availability of all the states is usually impossible in the actual process, we assume that just the system output is measurable and the system states are not available. First, to estimate the immeasurable states a state observer is designed. Relatively fewer res...
متن کاملAdaptive Speed Control of Three-Phase Induction Servo-drives Based on Feedback Linearization Theory
In this paper, based on feedback linearization control method and using a special PI (propotational integrator) regulator (IP) in combination with a feed-forward controller, a three-phase induction servo-drive is speed controlled. First, an observer is employed to estimate the rotor d and q axis flux components. Then, two input-output state variables are introduced to control the dynamics of to...
متن کاملSmart Vibration Control of Magnetostrictive Nano-Plate Using Nonlocal Continuum Theory
In this research, a control feedback system is used to study the free vibration response of rectangular plate made of magnetostrictive material (MsM) for the first time. A new trigonometric higher order shear deformation plate theory are utilized and the results of them are compared with two theories in order to clarify their accuracy and errors. Pasternak foundation is selected to modelling of...
متن کاملAdaptive Speed Control of Three-Phase Induction Servo-drives Based on Feedback Linearization Theory
In this paper, based on feedback linearization control method and using a special PI (propotational integrator) regulator (IP) in combination with a feed-forward controller, a three-phase induction servo-drive is speed controlled. First, an observer is employed to estimate the rotor d and q axis flux components. Then, two input-output state variables are introduced to control the dynamics of to...
متن کاملDirect Exact Feedback Linearization based control of the of the Output Voltage in the Minimum phase DC-DC Choppers
In this paper, a novel approach for control of the DC-DC buck converter in high-power and low-voltage applications is proposed. Designed method is developed according to state feedback linearization based controller , which is able to stabilize output voltage in a wide range of operation. It is clear that in high-power applications, parasitic elements of the converter may become comparable with...
متن کامل